Numerous online marketing trade associations have announced their latest initiative to bring structure and transparency to an industry that can only be called the Wild, Wild West of the data world: online audience data. Their approach offers some useful lessons to data publishers.

At their brand-new one-page website (www.datalabel.org) this industry coalition is introducing its “Data Transparency Label.” In an attempt to be hip and clever, the coalition has modeled its data record on the familiar nutrition labels found on most food packaging today. It’s undeniably cute, but it’s a classic case of form not following function. Having decided on this approach, the designers of this label immediately boxed themselves in as to what kind and how much data they could present to buyers. I see this all the time with new data products: so much emphasis is placed on how the data looks, its visual presentation, that important data elements often end up getting minimized, hidden or even discarded. Pleasing visual presentation is desirable, but it shouldn’t come at the expense of our data.

The other constraint you immediately see is that this label format works great if an audience is derived from a single source by a single data company. But the real world is far messier than that. What if the audience is aggregated from multiple sources? What if its value derives from complex signal data that may be sourced from multiple third parties? What about resellers? Life is complicated. This label pretends it is simple. Having spent many years involved with data cards for mailing lists, during which time I became deeply frustrated by the lost opportunities caused by a simple approach used to describe increasingly sophisticated products, I see history about to repeat itself.

My biggest objection to this new label is that its focus seems to be 100% on transparency, with little attention being paid to equally valuable uses such as sourcing and comparison. The designers of this label allude to a taxonomy that will be used for classification purposes, but it’s only mentioned in passing and doesn’t feel like a priority focus at all. Perhaps most importantly, there’s no hint of whether or not these labels will be offered as a searchable database or not. There’s a potentially powerful audience sourcing tool here, and if anyone is considering that, they aren’t talking about it.

 Take-aways to consider:

·     When designing a new data product, don’t allow yourself to get boxed in by design

·     The real world is messy, with lots of exceptions. If you don’t provide for these exceptions, you’ll have a product that will never reach its full potential

·     Always remember that a good data product is much more than a filing cabinet that is used to look up specific facts. A thoughtful, well-organized dataset can deliver a lot more value to users and often to multiple groups of users. Don’t limit yourself to a single use case for your product – you’ll just be limiting your opportunity.

Comment